Far-IR Surveyor

- Wavelength coverage: 25--500 µm in 6--8 log-spaced bands with R~500
- Monolithic telescope diameter ~ 5 m.
- Telescope actively cooled to < 4 K, instruments cooled to <100 mK.
- Field of View = 1 deg at 500 μ m
- Mission: 5 years + at Earth-Sun L2
- High-resolution (heterodyne) spectroscopy also compelling, possibly for warm phase.

Habitable-Exoplanet Imaging Mission

- <~8m monolith or segmented
- Optimized for exoplanet direct imaging.
- ExoEarth detection and characterization:
 - Needs ~10⁻¹⁰ contrast
 - Coronagraph and/or starshade
 - Camera
 - Optical and near-IR for planet characterization
 - IFU, R>70 spectrum of 30 mag exoplanet
 - 1" FOV
- Potential for an instrument for spectroscopic characterization of transiting planets.
- UV-capable telescope/instrument suite would enable compelling COR science.
- L2 orbit or Earth-trailing

Large UVOIR Surveyor

- ~8-16m
 - likely segmented, obscured primary.
- Cosmic origins science
 - HST-like bandpass (FUV to Near IR)
 - Suite of imagers/spectrographs
- ExoEarth detection and characterization:
 - Needs ~10⁻¹⁰ contrast
 - Coronagraph (likely), perhaps with a starshade
 - Camera
 - Optical and near-IR for planet characterization.
 - IFU, R>70 spectrum of 30 mag exoplanet
 - 1" FOV
- L2 Orbit

X-ray Surveyor per Astrophysics Visionary Roadmap

- Effective area ~3 m²
- Sub-arcsecond angular resolution
- High-resolution spectroscopy (R ~ few x 10³) over broad band via microcalorimeter & grating spectrometer instrumentats
- FOV ≥ 5'
- Energy range ~0.1–10 keV